If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+18x-5=0
a = 13; b = 18; c = -5;
Δ = b2-4ac
Δ = 182-4·13·(-5)
Δ = 584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{584}=\sqrt{4*146}=\sqrt{4}*\sqrt{146}=2\sqrt{146}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{146}}{2*13}=\frac{-18-2\sqrt{146}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{146}}{2*13}=\frac{-18+2\sqrt{146}}{26} $
| 16=-6v+4(v+6) | | 2g=56 | | 10=3.7+0.2y | | 3x+-77-1=32-x | | n^2-5n+-2=0 | | 4(x+5)-2x=28 | | 8v=10+3v | | 6^(x+6)=7^x | | 6=-10(x+9)-4 | | 7(4x+8)=112x=2 | | 6=-10(c+9)-4 | | (3+x)(3-x)=180 | | 9+3x=12-× | | -6x-1248= | | j/5+18=25 | | -6x-1248=- | | 5k-16=74 | | x-4=(2(x-8))/(x-4) | | -2x²+3x=7 | | 5d-17=18 | | 12=v/8+9 | | X+1+x+10+x+10=180 | | 7x=492x-3 | | 142=2x+150 | | 2n=4(n-8)n= | | 5x+17+18=45 | | 8.5x-10=6.25x+223 | | 3x+1+3x-10+3x+18=180 | | 50(10)/10^2+25=C(t) | | 8=2h-8 | | H=-16^2+84t+100 | | 50(t)/t^2+25=C(t) |